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Forced two-dimensional turbulence in spectral and physical space
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Two-dimensional~2D! turbulence in the energy range exhibits nonuniversal features, manifested in the
departure~at low k) from thek25/3 energy spectrum law, variable energy flux, and irregular, nonlocal transfers.
To unravel the underlying mechanism we conducted a detailed study of the 2D turbulence in spectral and
physical space. It revealed complex multiscale organization of vorticity field and dynamic processes, ranging
from large-scale meandering jets to strong localized vortices. The latter bear prime responsibility for the
nonuniversal behavior of 2D turbulence, and we examined their statistical features and the growth mechanism.
Our results are based on the numeric simulation of 2D turbulence on the 512 grid under different forcing-
dissipation conditions.
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I. INTRODUCTION

The standard KBL~Kraichnan–Batchelor-Leith! phenom-
enology of 2D incompressible turbulence exploits its tw
conserved integrals, energy and enstrophy, and predicts
inertial intervals, above and below the forcing scale. T
upscale energy flux should give, according to the theory,
k25/3 energy spectrum, while the downscale enstrophy fl
gives the energy spectrum with the slope23. Both cascades
should be sustained by constant fluxes~dissipation rates! of
energy« and enstrophyh through local transfers.

Since its inception the theory went through an extens
numeric and experimental study to verify its premises a
predictions. Early works~ @1,2#! seem to confirm thek25/3

spectra in the energy range and later studies found link
some physical space properties: velocity increments and
statistical moments~ @3–7#!. It was shown, in particular, tha
the longitudinal velocity has even moments of its increme
close to Gaussian, while its third-order structure funct
obeys the Kolmogorov-type 3/2 law.

Though most efforts have so far focused on reproduc
universal features, some authors observed strong depar
from universality, like spectra deviating from the25/3 law
@8#, or nonlocal transfers and fluxes@9#.

An obvious obstacle to universality comes at the ve
setup of the problem—the energy dissipation mechanism
large scales. The natural way to dissipate energy in 2D flo
is via bottom friction~linear drag!. Since bottom drag affect
all scales uniformly, it invalidates the ‘‘dissipation-free’’ in
ertial interval in the energy range. Indeed, numeric simu
tions and experiments show consistent drop of the ene
flux as k→0 in such flows. To recreate a dissipation-fr
‘‘inertial interval’’ ~with constant flux!, some authors apply
linear drag selectively to a few gravest modes of the sys
@10#, or replace linear drag by scale-dependenthypofriction
@8,11#.

While hypofriction could produce an almost constant fl
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over a large portion of the energy range, it leads, contrary
expectations, to a drastic departure from the25/3 law @8,12#
~spectral slope close to23, reported in@8#!. On the contrary,
simulations with linear drag could give a nearly perfe
25/3 slope, but their energy flux becomes highly nonu
form @13#. Both tendencies are rooted in the nonlocalness
the inverse cascade.

Sukorianskiet al. @12# claimed that 2D turbulence in th
energy range is highly sensitive to the infrared dissipati
and any attempt to abruptly terminate the inverse casc
could drive the spectrum away fromk25/3. They show that
the idealk25/3 spectrum could appear in the dissipation-fr
interval @kls ,kf # under special parametrization of ‘‘supe
grid’’ modes k,kls that ‘‘damp excess energy.’’ Whethe
realistic or not, this proposal shows thek25/3 spectra to be
highly exceptional.

So the basic problems in 2D turbulence are~i! whether
universalk25/3 spectra are possible, and if so, under wh
conditions,~ii ! what makes the flow depart from universalit
and ~iii ! how to quantify these departures and link them
the flow dynamics?

Some authors associate nonuniversal spectra with st
vortices, most apparent in the hypofrictional case@8#. So one
is naturally led to study the physical space structures of
turbulence, beyond the standard velocity increments and
ments.

There is no clear picture~consensus! on the physical
space structure of turbulence and conflicting claims are o
made. Some authors~e.g., @8#! view inverse cascade as th
‘‘growth of strong vortices sustained by vortex mergers
Other works@7,6# argue for ‘‘agglomeration’’ as the princi
pal organizing process but give little detail or explanatio
Vortices have been consistently observed in numeric sim
tions @10# but usually at the forcing~or nearby! scales far
from the energy peak. It remains unclear whether such v
tices could form spectra of the inverse cascade range
how they would do it.

Our paper aims to address and quantify some nonuni
sal features of the inverse cascade and examine the un
ing physical space dynamics. To this end we conducte
series of numeric experiments with the 5122 pseudospectra
©2001 The American Physical Society08-1
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code in several regimes of linear friction, as well as hyp
riction, and frictionless systems. On the spectral side we
systematic departures from the universal behavior reporte
@13# and reviewed here. They take on several forms:~i! spec-
tral bulge in the compensated spectrumk5/3E(k), ~ii ! incon-
sistency of the25/3 slope with constant energy flux, an
~iii ! highly irregular and nonlocal transfers whereby forcin
scale modes couple directly to the energy-peak~infrared!
modes.

Our study of the physical space vorticity field reveal
two levels of organization:backgroundand large-scale sec
ondary flow. The former consists of small~forcing size! vor-
ticity patches, unstable due to straining and filamentation,
velocity field is nearly Gaussian and the energy spectr
remains close tok25/3. The secondary structures evolve fro
the k25/3 background@8# and could take on two forms:~i!
clustersof the background patch density along with larg
circulation zones and jets,~ii ! strong localized vorticesthat
develop from the local vorticity extrema, under favorab
conditions

We focus our attention on strong vortices, examine th
statistical and dynamic features, the role of forcing and fr
tion in the evolution of the system, its statistical equilibr
tion, links between large-scale structures, vortices and
ergy spectra. Our results corroborate some earlier find
and proposals on the ‘‘vortex role’’ in nonuniversality. B
they also reveal some unexpected results, particularly,
statistical mechanisms of vortex growth.

Our results also suggest a possible alternative to
‘‘spectral cascade’’ phenomenology in physical space
could be based~at least partly! on the stochastic model of th
vortex growth/ dynamics. The complete theory of the phy
cal space turbulence wanting, we mostly describe our ob
vations and attempt to draw some conclusions and out
conceivable mechanisms, as well as formulate problems.
hope the future work will clarify some of these issues.

The paper is organized in four sections. Section II outlin
the numeric procedures and experiments, Sec. III descr
‘‘nonuniversality’’ in spectral space, while Sec. IV dea
with the physical space structures and processes.

II. NUMERICAL EXPERIMENTS

We use the standard vorticity formulation of 2D hydrod
namics in terms of stream fieldc(x,t) and its vorticity z
5Dc,

] tz1J~c,z!5Dz1 f . ~1!

Here J(c,z)5]xc]yz2]yc]xz denotes the Jacobian ofc
and z, f represents external~driving! force, andD is the
dissipation operator at low and high wave numbersk. One
normally takes it in the form of ‘‘friction1 viscosity,’’ D
52l1nD, or more generally, ‘‘hypofriction 1 hypervis-
cosity’’ D52l(2D)2m2n(2D)n, implemented via
positive/negative powers of the Laplacian.

The Fourier transform of Eq.~1! takes on the form

] tzk1Jk5Dk1 f k , ~2!
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for kth modes of each term~1!, and the dissipation operato
becomes diagonalized

Dk52FlS k0

k D 2m

1nS k

kmax
D 2nGzk .

The low cutoff wave numberk0 marks the region of high
hypofriction, while kmax denotes the maximum resolve
wave number. Casem50 corresponds to the linear dra
used in most our experiments.

We integrate system~2! by the fully dealiased pseu
dospectral method@14#. In this algorithmkmax50.94(N/2),
whereN measures the number of grid points along the ax
Most our simulations run at resolutionN5512, with a few
exceptions atN5256. The time stepping was implemente
by the third-order Adams-Bashforth method@15#.

Following @10# we force the system with a Markovia
process: f k(t1dt)5A(12r 2)1/2eiu1r f k(t) (t marks dis-
crete time steps! of amplitudeA, correlation radiusdt/(1
2r ), and random uniformly distributed phasesu on @0,2p#.
In most experiments, the source was localized within narr
spectral range (kf22,kf12) in the vicinity of the forcing
wave numberkf . Time stepdt in experiments with linear
drag was 0.002. It was reduced to 0.001 in the frictionless
hypofriction experiments.

Table I records the basic input parameters along with
vorticity kurtosis and the energy peak wave number in
linear drag cases, while Table II does it for the hypofrictio
and frictionless runs.

Runs 13 and 14 were performed at lower resolutionN
5256. Time correlation parameter was chosen asr 50.9 in
runs 1–6, 13, 17 and 4h, andr 50.5 in all other runs. Beside
runs 11 and 12 had a wider range of the forcing wave nu
bers (kf25,kf15). In all linear-drag cases we integrated t
system for several~up to 9! units of the friction dissipation
time 1/l, to ensure the energy and enstrophy stabilizati

TABLE I. Runs with linear drag.

kf l Hyperviscosity « ~units of 104) Kurtosis kpeak

1 100 0.1 n52; n52 6.5 3.5 26
2 100 0.05 n52; n52 6.6 3.5 15
3 100 0.03 n52; n52 6.7 4.5 9
4 100 0.02 n52; n52 6.6 5.5 6
5 100 0.015 n52; n52 6.5 7.0 4
6 100 0.05 n52; n52 25 4.6 9
7 100 0.03 n52; n52 4.4 4.2 9
8 100 0.05 n52; n52 4.4 3.8 21
9 150 0.03 n520; n58 13 3.5 6
10 150 0.02 n520; n58 13 3.9 3
11 150 0.03 n520; n58 20 3.5 6
12 150 0.03 n520; n58 5.1 3.5 9
13 60 0.03 n52; n52 9.6 3.7 6
14 80 0.03 n520; n58 20 3.4 5
15 80 0.03 n540; n54 34 7.3 4
16 80 0.05 n540; n54 34 5.2 9
17 100 0.03 n520; n54 25 5.3 5
8-2



FORCED TWO-DIMENSIONAL TURBULENCE IN . . . PHYSICAL REVIEW E63 061208
TABLE II. Runs with hypofriction and without friction

kf Friction Hyperviscosity « ~units of 104) Kurtosis kpeak

1h 100 0.01(10/k)4 n52; n52 3.0 39 12
2h 80 0.03(8/k)4 n540; n54 36 38.8 10
3h 80 0.03(6/k)4 n520; n58 20 27 8
4h 100 0.03(8/k)4 n520; n54 25 31 9
1n 150 no n53.5; n52 1
2n 100 no n53.5; n52 2.5
3n 100 no n550; n58 2.5
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The frictionless cases 1n–3n could run only for a limit
time span due to the energy accumulation in the low
modes, typically up to 50 computational time units,1 that
suffices for the energy equilibration in most linear-dr
cases.

The energy peak wave numberkp marks the arrest scal
of the inverse cascade.

III. NONUNIVERSAL FEATURES OF INVERSE CASCADE

A. Energy spectra and fluxes

Figure 1 shows compensated energy spectrak5/3E(k), and
energy fluxes

P~k!52 (
k8<k

Tk8 , Tk5Re~c2kJk!

obtained in experiments 1–5. HereTk are transfers into the
modek. The energy fluxes are variable and the energy d
sipation rate is connected to them by«5maxuP(k)u. In series
1–5 we fixed forcing and let the drag coefficientl vary.
Formally, linear drag should equilibrate the total energy
time scale 1/2l, a consequence of the~approximate! balance

~] t12l!Etot'«.

Indeed, in our experiments the total energy has neglig
fluctuations at later times (t.3/l), but its isotropic spectra
E(k) still fluctuate noticeably. Thus spectra of Fig. 1~a! ob-
tained after long averaging~several times 1/l) would keep
oscillating in the infrared region.

Notice, that compensated spectra contain the plateau
terval near the source, but it does not imply the const
energy flux. Indeed, in the linear-drag case we observe
tendency of fluxP to drop down to zero ask→0, faster than
any noticeable change would occur in the spectral slope
is well within the plateau region, consistent with the resu
of @7,6#.

Another important observation has to do with the oppos
trends of the energy spectra and fluxes as one changes

1The computational time unit are nondimensionalized by mu
plying them with h1/35(«kf

2)1/3'1.3—enstrophy at the forcing
scale. So they characterize the vortex-turnover time on the for
scale.
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tion coefficientl. Decreasingl, the energy flux become
more uniform, while compensated spectra develop a m
pronounced bulge at the low end. That clearly violates
idea of locality, as ‘‘local cascade’’ would imply simulta
neous increase or decrease ofE(k) andP(k), while we see
the opposite trends over a broad range ofl.

As a consequence, the Kolmogorov constantCK , defined
by local values of the energy density and flux, become
function ofk @thin lines of Fig. 1~a!, computed in runs 1 and
5#. Its mean value, close to 6, agrees with some recent e
mates@10,6,7#. But the wide scatter ofCK reported in the
literature could be attributed to an attempt to represent
variable quantityCK by a single value.

While mean flux shows an apparent decay trend, o
might wonder whether a proper account of its fluctuatio
raised to the power 2/3~in the 25/3 law! would make it
more uniform~consistent with phenomenology! over the pla-
teau region. It turns out that the flux variance is always m

-

g

FIG. 1. Compensated energy spectra~a! and energy fluxes~b! in
experiments 1–5. Thin solid lines in~a! are the Kolmogorov con-
stants for experiments 1 and 5. Curves labeled with 1 and 5 co
spond to experiments 1 and 5, respectively.
8-3
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FIG. 2. Compensated energy spectra~a!, ~d!,
energy spectral fluxes~b!, ~e! and energy trans-
fers ~c!, ~e!, and their variances~dashed! in ex-
periments 17~a!, ~b!, ~c! and 4h~d!, ~e!, ~f!. The
dotted lines in~b! ~hardly seen! and ~e! show
P2/3(k)
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erate for linear-drag simulations, so it will not affect o
main conclusion. Indeed, Figs. 2~a! and 2~b! present energy
and flux along with their variancessE and sP for experi-
ment 17 whose energy production rate was four times
rate of experiments 1–5. Variances are defined in the u
way, sE

2(k)5(M21)21(n51
M @E(k,tn)2E(k)#2 for energy

and a similar form for flux. The averaging period was tak
as 3/l and averaging was performed over approximatelyM
51000 realizations. The dotted line in Fig. 2~b! shows the
time average ofP(k,t)2/3 raised to the power 3/2 and mu
tiplied with sgnP(k). It will be further denoted asP2/3(k).
The difference betweenP2/3(k) and the mean fluxP(k) is
hardly noticeable.

Let us remark that similar divergent trends between
energy spectrum and flux appear in other experiments
regimes, including the eddy-damped quasinormal Markov
~EDQNM! simulations@13#. They all confirm our main con-
clusion that the nearly perfectk25/3 spectrum is typically
accompanied by nonuniform fluxP(k), and any attempt to
produce constantP(k) would result in spectral bulge. Simi
lar conclusions could also be drawn from the recent hi
resolution simulations of@7# ~Fig. 2 therein!. The laboratory
experiment of@6# ~Figs. 2 and 3 therein! shows yet larger
departure, with25/3 slope stretching far into the regio
where the flux becomes negligible.

The nonlocality of transfers becomes most apparen
simulations with hypofriction. Figures 2~d! and 2~e! present
the energy spectrum and flux for experiment 4h~thin lines!,
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similar to experiment 17 in other parameters except for
pofrictional dissipation. It shows almost uniform flux ove
the large fraction of the energy interval, while its spectru
departs dramatically from the25/3 law. The actual slope ha
no single exponent, it comes close to23 over an octave nea
the forcing range, and grows shallower at the lower e
Once again we see nonlocal energy transfers. Variance
the energy spectrum and flux in hypofriction case increa
see Figs. 2~d! and 2~e!, but remain moderate for the mos
part of the energy interval. The energy flux shows stron
fluctuations than the energy spectrum, and its variancesP

could attain values comparable to the flux itself at the pe
region. One could also observe thatP2/3(k) @Fig. 2~e!, dotted
line# deviates from mean flux, but this deviation is positi
and cannot account for departure from the25/3 law. So flux
fluctuations seem to play a minor role in the hypofriction
case as well.

In all cases the formation of spectral bulge is accom
nied by a strong deviation of the vorticity kurtosis

Ku5^z~x,y!4&/^z~x,y!2&2

from its Gaussian value 3. Here angular brackets denote
averaging. Kurtosis remains virtually constant after turb
lence reaches the stationary regime. In experiments 1–5Ku
varied between 3.5 and 7, asl varied from 0.1 to 0.015.
Such deviations, though moderate, indicate the presenc
vortices in physical space.
8-4
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In Sec. IV we shall address properties of vortices in m
detail. But here we shall illustrate the vorticity pattern f
experiments 17@Figs. 3~a! and 3~b!# and 4h@Figs. 3~c! and
3~d!#. The size of vorticity patches on forcing scaleL f
5p/kf is approximately 2.5 grid intervals. The vorticity ku
tosis in experiment 17 takes on a moderate value 5.3,
vortex population~see figure caption for explanation! gives
minor contribution to the velocity field as evidenced by t
streamline pattern of Fig. 3~b!. The energy spectrum remain
close to the25/3 law @Fig. 2~a!#. Vortices grow much stron-
ger in hypofriction experiments and start dominating the
locity field @cf. Figs. 3~c! and 3~d!#. Concurrently, we ob-
serve the energy spectrum deviating strongly fromk25/3

@Fig. 2~d!#.
The magnitude of the bulge depends on«,l, as well as

the dynamics of the forcing range, and the spectral width
the energy and enstrophy intervals. Thus bulges observe
experiments 9 and 10 are less pronounced, compare
those of 3 and 4, despite increased« ~by factor 2!. Lower
kurtosis in experiments 9 and 10, compared to experimen
and 4, also indicates less intense vortices. We attribute it
poor resolution of the enstrophy range, whereby strong
perviscosity efficiently dissipates long filaments and sm
scale structures conducive to the large-scale organizatio

While our experiments do not allow more definite conc
sions regarding enstrophy resolution~or other forcing scale
processes!, they clearly relate the appearance of bulge
vortices. Damping vorticity production at the forcing rang
~by hyperviscosity! would typically flatten spectra and brin
them close tok25/3. Borue @8# noticed such sensitivity and

FIG. 3. Fragments of vorticity field (1283128 grid points! from
runs 17~a!, ~b! and 4h~c!, ~d!. In ~a! and~c! only negative vorticity
is shown. Contours are drawn foruzu5(0.5,2)z rms . In ~b! and ~d!
white areas correspond to positive, and black to negative vortic
The contours are drawn for stream function.
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argued that strong vortices would form only if both ultravi
let ~hyperviscosity! and infrared~friction! Reynolds numbers
are sufficiently high.

Thus a proper choice of forcing-dissipation paramet
could practically eliminate spectral bulge in the linear-dr
case~not in other cases!, but that comes at the expense
nonuniform energy flux due to nonlocality.

One of the basic problems in the inverse cascade is
proper parametrization of the energy-peak scalekp . The
standard approach, going back to Lilly@16#, looks for an
estimate in terms ofl and the energy dissipation rate«
5maxuP(k)u. In the linear-drag case one could derive such
estimate, assuming the standard energy spectrumk25/3 be-
tweenkp and kf , hence total energyE'*kp

kf CK«2/3k25/3dk

and 2lE'«. Then one gets

kp

kf
'@11~3CK!21Rel#23/2 ~3!

where

Rel5~«kf
2!1/3/l

is the friction Reynolds number. If Rel /(3CK) is large, the
dependence onkf drops down and the estimate forkp be-
comes

kp'~3CK!3/2S l3

« D 1/2

. ~4!

When compared to our experimental data, estimate~3! shows
good qualitative agreement, see Fig. 4.

A similar estimate, with slightly different coefficients
could be derived from a simple closure scheme for the
ergy equation,

~] t12l!Ek5Tk1«d~k2kf !. ~5!

We express the transfer termTk52]k(kmkEk) through the
‘‘relaxation rate’’ of large eddies,mk5a(*0

kp2Ep)1/2, with
an undetermined coefficienta. Assuming linear friction law
~constantl), Eq. ~5! allows an analytic solution forEk that
yields an estimate

y.

FIG. 4. Ratiokf /kp as a function of friction Reynolds numbe
experiments 1–17*, solid line corresponds to Eq.~3! with CK55.
8-5
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kp

kf
'.85F11S 3a2

2 D 1/3

RelG23/2

.

The latter agrees with our data fora'.01.

B. Nonlocal transfers

We recall the spectral energy equation

~] t22Dk!E~k!5 (
uku5k

~ f k1Tk!,

where

Tk5Re~cÀkJk!5 (
p¿qÄk

Apq
k Re~zpzqzk* !

and

Apq
k 5p3qS 1

p2
2

1

q2D
are ~Jacobian! structure coefficients. We expand thekth
transfer termTk into the sum of partial transfersTk,p , that
represent contributions of various pairs$p,q% to the kth
mode~cf. @9#!. The isotropic transfersTk , Tkp are obtained
by summing over all equal length wave vectors,uku
5k, upu5p.

Isotropic transfersTk have highly irregular realization
and more so partial transfers. In Figs. 2~c! and 2~f! we
present realizations of transfers, mean transfers, and tra
variances from runs 17 and 4h. Contrary to the mean ene
spectrum and mean flux, the mean transfer departs stro
from its realizations due to high variance. One would exp
it in the inertial interval where the mean transfer is alm
zero. We observe it, however even in the energy peak reg
The transfer variance is largest there, and based on obs
tions, we could associate it with long-lived fluctuations.

Maltrud and Vallis @9# observed thatTk combine local
and nonlocal contributions, and the nonlocal ones are larg
responsible for the inverse cascade. Indeed, the bulk of
ergy according to@9# is carried over by elongated triads wit
two long legs$p,q% in the forcing/enstrophy intervals.

We examined energy transfers in experiment 14 with
ear drag and experiment 3h with hypofriction. Both expe
ments had lower resolutionN5256, because computation
of averaged partial transfers~for over t52/l in experiment
14 and the same in 3h! become prohibitively slow at highe
resolution. We also measured transfers in experiment 11
resolution of 512, averaging it over shorter time interva
We observed the same behavior as in the lower-resolu
experiment although the measured transfers were less r
lar.

Figure 5 shows resolved transfersTkp in experiments 14
and 3h, for wave numbersk510 ~a!, 30 ~b!, 50 ~c!, and 80
~d!. Solid lines correspond to experiment 14 and thin lines
experiment 3h. Transfers are highly irregular at smallk and
remain so after long averaging. The energy spectrum in
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periment 14 is very close tok25/3, and it is much steepe
~with a slope of -2.5 over a narrow interval close tokf) in
experiment 3h.

On the whole, our numerics confirmed@9#. Namely, fork
between the energy peak (kp53 –10! and forcing scale
@Figs. 5~b! and 5~c!#, the principal contribution toTk comes
from triads withp in the vicinity of k. Besides, thek modes
would gain energy (Tkp.0) from triads with p,k,p'k,
and loose it top.k, p'k. So the~local! energy transport
neark proceeds primarily in the downscale~forward! direc-
tion. The inverse transfer tok involves triads withp in the
forcing ~or enstrophy! range, hence is highly nonlocal~large
p would require largeq to form a triad with a smallk). For
k at the energy peak@Fig. 5~a!# positive contribution comes
mostly fromp on the right ofkp and to a lesser degree from
nonlocal triads (p—in the forcing range!. The wave numbers
k in the forcing range@Fig. 5~d!# loose considerable portion
of their energy to smallp at the energy peak. Let us als
remark that transfers of experiments 14 and 3h look simi
despite substantial differences in the energy spectra and
vorticity field ~the differences are similar to those shown
Figs. 2 and 3!.

To summarize we find spectral transfers to be highly n
local and irregular in space and time. This indicates unsta
transient, and irregular physical space structures respon
for the transfer. We shall discuss them in Sec. IV.

C. Nonstationary turbulence

Smith and Yakhot@3# studied frictionless~hence nonsta-
tionary! 2D turbulence, and observed thek25/3 spectra and
near Gaussian velocities at the initial stage, before the en
peak has reached the box size. Their simulations, howe
completely suppressed the enstrophy interval by hyper
cosity. When hyperviscosity was lowered, they saw mu
steeper spectra at the initial phase~slope22.2 in Fig. 14 of
@3#! and the concurrent formation of vortices. Thus nonu

FIG. 5. Energy transfersTkp in experiments 14~solid lines! and
3h ~thin lines!: ~a! k510, ~b! k530, ~c! k550, and~d! k580.
8-6
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versality could appear right at the start of the turbulent e
lution and is evidently linked to the small scales processe
the enstrophy range.

In our frictionless experiments, only spectra of 1n r
mained close tok25/3 initially as the vortex production wa
strongly suppressed at the forcing scale. Spectra of exp
ment 2n developed substantial spectral bulge accompa
by strong vortices during turbulence evolution. Spectra
experiment 3n deviated fromk25/3 from the start. The spec
tral slope varied during its evolution reaching values (22.2
to 22.5) by the end of simulation. Robust vortices grew
size and intensity.

We find once again the universalk25/3 spectrum to be
highly exceptional and unstable even at the early~ nonsta-
tionary! phase. The above deviations fromk25/3 are associ-
ated with vortices. We also find@3# that strong damping a
the forcing/enstrophy scale could inhibit their formation a
hence temporarily recreate a universal behavior. But
subtle dependence of the ‘‘large scale spectra’’ on ‘‘ens
phy resolution’’ signifies nonlocality of the inverse cascad

In our search of an explanation we turn next to the phy
cal space description.

IV. PHYSICAL SPACE TURBULENCE

The physical space 2D turbulence follows a complex m
tiscale evolution, but we could roughly distinguish tw
stages along with the associated time scales:~i! enstrophy
saturation on time scaletV , ~ii ! energy saturation on time
scaletE .

The two scales are well separated,tV!tE , with a fast
enstrophy process followed by the slow energy one.

We get a rough estimate oftV in terms of the enstrophy
production rate h5«kf

2 and dissipation scale kd

;kmax(h
1/3/n)1/2n,kmax ~for hyperviscosity of order 2n).

Under these assumptions and the conventional enstro
range spectrumE(k)5Ch2/3k23, we get2

tV;h21/3ln~kd /kf !.

In a similar vein we could estimate the total enstroph
V0'Ch2/3ln(kd /kf) and the rms vorticityz rms5AV0 ex-
pressed through the same variables,h, kf , kd .

We tracked the initial phase in experiments 15 and 16
estimated the enstrophy equilibration time at several u
2p/z rms . As expected, bothtV and the stationary rms vor
ticity z rms'9.7 were insensitive to changingl , while other
parameters were held fixed.

The first stage creates a quasistationarybackgroundfield,
made of small patches of vorticity about forcing scale in
highly agitated state of production, straining, and dissipati
The slow energy-saturation process leads to formation
secondary structures and~depending on the details of large

2Such a relation should hold for sufficient scale separation okf

andkd , but in most our simulations the enstrophy range was poo
resolved (kf /kmax;1), sotV should depend onkf /kmax rather than
kd /kf .
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and small-scale dissipation! it could go in two directions:
transient large-scaleclusters, circulation zones, and jets on
the one hand and strong localizedvorticeson the other.

Following @8# we define strong vortices as patches of vo
ticity above 2 rms (uzu.2z rms), centered at local extrema. I
addition we require the mean vorticity over the vortex area
exceed 2.5z rms . In most cases, our selection picks we
identified vortex structures.

Any partition of z into ‘‘background’’ and ‘‘strong vorti-
ces’’ is somewhat arbitrary as in reality one observes a br
spectrum of localized vortex patches, ranging in size, int
sity, and shape from small elongated filaments to large v
tex cores. Numerous segmentation criteria of vorticity we
proposed in the literature~e.g., @17–23#!. Some of them
~Okubo-Weiss@20,21# or later modifications@23#! focus on
topology/geometry of velocity field~elliptic/hyperbolic re-
gions!, which would be appropriate for analysis of stirring
2D turbulent flows, or decaying turbulence. Here we emp
a simple Borue-type criterion appropriate for strong localiz
vortices.

In a typical realization, strong vortices occupy a sm
area ~less than 5%! but carry the bulk of enstrophy, an
differ markedly from large, organized vortices of the deca
ing turbulence@17–19#. Indeed, forced turbulence constrain
their size to two to three times the forcing scale but allo
high intensity buildup, to 10–15 rms.

Vortices appear in all regimes but in the linear frictio
case, they have limited size, relatively short life-span, and
not contribute significantly to the energy spectrum~Fig. 2!.
On the contrary, hypofriction or frictionless turbulence a
lows strong, well-identified vortices to dominate the dyna
ics and become principal contributors to the spectrum.

In this section we attempt to quantify some details
vortex dynamics and growth mechanism and the role of fo
ing dissipation.

A. Large-scale organization

The largest-scale organization appears in the form
broad circulation zones and jets. They are clearly visible
the stream field patterns, Fig. 3~b!, that show streamlines
superimposed on the vorticity field for a particular realiz
tion of experiment 17. Averaged energy spectrum in t
simulation has a wide plateau with a slope close to
25/3 slope@Fig. 2~a!# and lowkp55. Circulation zones in
physical space enclose clusters of vorticity of variable s
but overall nonzero mean.

The main contribution to the energy peak comes fro
strong jets on the periphery of the opposing circulati
zones. Clearly, mean vorticity on the largest scale is sm
compared toz rms , but the very size of zones makes the
fairly stable to fast, small-scale processes like patch strain
and recombination of vortex clusters. Those tend to redist
ute vorticity within zones and deform their periphery, whi
the mean circulation persists. We measured the decorrela
time of large circulation zones and found it to betdec
'1/(3l) –1/(5l), in terms of frictional dissipation time.

Jets persist on yet longer time scale thantdec. This seems
to suggest that friction could arrest the inverse energy c

y
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SERGEY DANILOV AND DAVID GURARIE PHYSICAL REVIEW E 63 061208
cade, and stabilize the flow on the level of circulating je
However, the standard explanation of the arrest mechan
of inverse cascade at friction scale,Ll , appeals to hypotheti
cal ‘‘large eddies’’ whose turnover periods are estimated
(Ll

2/«)1/3. Equating the latter to the friction time 1/l, one
gets an estimate:Ll'C(«/l3)1/2, which is consistent with
scaling~4!. In our experiments we saw no comparable ‘‘e
dies’’ and even the largest organized structures~zones and
jets! would typically decorrelate over a fraction of 1/l. So
‘‘large eddies’’ would deform and disintegrate faster th
‘‘dissipate’’ and the mechanism of ‘‘frictional stabilization’
in physical space remains unclear.

B. Vortices

Localized vortices appear in all regimes of the forced
turbulence. Yet under favorable conditions they could gr
strong and dominate the dynamics and spectra. Vo
patches and filaments vigorously strain each other and d
pate on forcing scale, so local vorticity extrema could gr
into strong vortices if they pass a suitable stability test.
simplest version~for uniform elliptic vortex patches@21,24#!
takes the form

s5z rms<0.15uzVu ~6!

in terms of rms strains ~that coincides with rms vorticity!
and mean vorticityzV at the vortex core. Sufficiently highzV
could in principle ensure the vortex survival.3

In our linear-drag experiments, the mean vorticity
strongest vortices did not exceed~3–4)z rms ~even for large-
kurtosis: experiments 5 and 15!, while their extrema were
capped below 10z rms , and vortex radii seldom grew abov
~1–1.5)L f . Much stronger and somewhat larger vortic
@~2–3)L f# evolve in the hypofriction and no-friction system

A strong vortex creates a domain of influence~circulation
zone! that depends on its intensityI ~vorticity integrated over
the 2rms area! and the background. One could estimate
radius of influence by comparing rms velocityUrms5A2E
~of the background field! to the vortex-induced velocity
V(r )'I /r , which givesR'I /Urms .

In our experiments~5 and 15! with strong vortices, the
radius of influence was roughly 2 vortex radii. Hence vor
ces could directly contribute to the energy spectrum in
range@kf /6,kf #. Notice, that the low end of this interval ex
tends well within spectral bulge@13#. So we get a clear evi
dence of the vortex contribution to the bulge.

We get further confirmation by removing all local vortic
ity protrusions in excess of 2z rms . The resulting ‘‘back-
ground’’ field comes very close to thek25/3 spectrum with
only small remnant of the bulge.

To understand vortex contribution to the energy spectru
we turn next to vortex organization and dynamics.

3Estimates like Eq.~6!, based on a simple model of elliptic patc
in strain fields, should not be taken literally but only as a roug
cutoff between strong stable vortices and other~transient! extrema
of background vorticity.
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1. Vortex distribution and spectra

To estimate the contribution of vortices to the ener
spectra, Benziet al. @18# ~cf. @25#! proposed a similarity
theory. They consider all vortices to be radially symmetr
and postulate a universal shape functionZ(r ) for the vortic-
ity distribution within vortex core. All vortices are then la
beled by a single parameter, vortex radiusR→zR(r ), and
assumed to be similar toZ(r ) subject to two scaling laws

~i! Self-similarity: zR(r )5RaZ(r /R), for any radiusR
~ii ! Vortex distribution by size: numbernR of vortices of

radiusR scales as'R2B. Besides Benziet al. make an ad-
ditional assumption as follows.

~iii ! Vortex positions decorrelate over large time. So af
sufficiently long averaging, vortices should occupy all pa
of the physical space with equal probability, independ
each of the other.

Based on assumptions~i!–~iii ! Benzi et al. deduced the
mean energy spectra of such vortex arrays to be

Ek'Ck261b22a

where constantC depends on functionZ. They claimed to
verify all three assumptions for the decaying turbulence.

Borue @8# applied their similarity theory to the hypofric
tional turbulence. He estimated two critical exponents to
a'1/2,b54, and hence got the energy spectral slo
E(k);k23, measured in his simulations of the develop
turbulent state.

We attempted to reproduce these results in our~lower
resolution! hypofrictional experiments. Though our spectr
slopes came close to23, we could not corroborate the othe
findings. Namely, the distribution of vortex radii is too na
row: Rmax/Rmin'2–3 for a reliable statistical inferenc
~Borue had a wider but still limited range'5); the measured
exponenta was close to 1 as opposed to 1/2 of@8#; we found
a tendency of strong vortices to group in vortex dipoles a
spend certain time in such bound states, which puts in do
the ‘‘decorrelation hypothesis’’~iii !.

Overall hypofrictional vortices grow stronger compared
the linear-drag case, as seen by their kurtosis~30–40 vs
5–7!. The mean vorticity level of the strongest vortices cou
reach~5–7)z rms , while their vortex extrema soar to 15z rms
and higher. Yet vortex radii still remain tight,4 about ~2–
3)L f . Robust vortices in our hypofrictional experimen
were approximately Gaussian but we did not pursue th
detailed analysis.

Though similar in appearance and scale, the hypof
tional vortices have different effects on the large-scale or
nization of vorticity compared to the linear-drag case.
Figs. 3~c! and 3~d! we presented a fragment of vorticity fiel
from experiment 4h that includes several dipole features.
background looks faint compared to the linear-drag c
@Fig. 3~a!# due to a high core level~above rms!. In Fig. 3~d!

4Borue @8# claimed to produce larger size vortices~up to 5L f)
with steeper hypofrictional law.
8-8
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FORCED TWO-DIMENSIONAL TURBULENCE IN . . . PHYSICAL REVIEW E63 061208
we see streamlines and, consequently energy concent
around vortex core rather than encircling wide zones a
Fig. 3~b!.

Quasistationary forced turbulence involves a balance
source, transfer, and viscous/frictional dissipation. It a
sets in a quasistationary vortex distribution. To this end
conducted two sets of experiments,~i! traced the growth-
decay dynamics of individual vortices and the principal co
tributing factors;~ii ! focused on the statistical and stochas
features of vortex dynamics.

2. Vortex growth

Here we describe the growth dynamics of individual vo
tices in different regimes, as manifested by a sin
quantity—vortex intensity and its long term tendencies. W
pick a particular positive local extremum above 2 rms, ta
its local ~smoothed! contour areaA5$x:z(x)>2z rms% and
define intensity

I V5E
A
z~x!dA.

The intensity evolution,dIV /dt5DV1FV1TV , has three
principal sources

DV5E
A
DzdA2~dissipation!, ~7!

FV5E
A
DzdA2~ force!, ~8!

TV52E
A
J~c,z!dA1 R

G
u•¹z1•••2~ transfer!. ~9!

The latter, called transfer~or residual! by analogy with the
corresponding spectral term, includes the Jacobian, trans
across~moving! boundaryG, and other contributions due t
nonconservation of the boundary.

We are interested in the long range integrated tenden
of three factors in the overall balance ofI V ,

D~ t !5E
0

t

DVdt, F~ t !5E
0

t

FVdt, T~ t !5E
0

t

TVdt.

We conducted a series of experiments in the different
gimes of forcing dissipation and found some unexpected
sults. They reveal a subtle balance between three tende
of the vortex growth process.

Figure 6~a! shows vortex intensityI 5I V ~1! along with
three basic tendencies: forcingF ~2!, dissipationD ~3!, and
residualT5I V2I V(0)2D2F in the linear-drag experimen
15. Sharp increases of the vortex intensity~curve 1! result
from big mergers. These events are rare in the linear-d
case and we have chosen this particular example to illus
their presence. Mergers lead to jumps of the vortex inten
due to the increased area. But such increases do not pe
as merged vortex would rapidly shed off the excess~low
level! flanks to bring itself to a stable~near circular! configu-
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ration. In most cases, the intensity would eventually relax
a premerged state~shown in curve 1!, and only rarely would
mergers yield a substantial gain. Overall vortex intensity
the linear-drag case fluctuates around some stable leve
slowly decays.

A consistent positive trend of the forcing tendencyF
~curve 2—typical of all vortices! looks most puzzling. In-
deed, the integrated input of the stochastic source in
fixed area should be zero in the long run. So accumula
could come only through the vortex motion and its ‘‘ability
to track the source tendency.

We observed the positiveF trend ~negative for negative
vortices! in all regimes and experiments. Furthermore, t
cumulativeF trend was much stronger than the typical r
sidual termT ~curve 4!. The latter could give significan
input only through mergers, like in Fig. 6~a!, but remains
nearly constant otherwise, and close to zero in the absenc
mergers.

The dissipation term~curve 3! includes both friction and
hyperviscosity. For relatively small vortices they ha
roughly equal order. The overall balance in the station
linear-drag case is negative~for strong vortices! as dissipa-
tion tendency prevails,F2D1T<0. So strong vortices
would decay unless sustained by mergers.

In the absence of friction or in the hypofrictional cas
only hyperviscous dissipation acts on the vortex scale.
contribution is overall smaller than the vorticity productio
by the source and this imbalance leads to the vortex grow

The hypofriction case is intermediate between the lin
drag and no-friction cases. Total energy slowly stabilizes
the equilibrium value, so numeric integration becomes l
prohibitive. Figure 6~b! shows typical vortex tendencies for
hypofriction experiment~2h!, at the equilibrium state. Vortex
intensity~curve 1! grows slowly, mergers become more fr
quent but once again they may not lead to the net increas
intensity. In our example, it increases after the first mer
but decreases after the second one. The forcing tende
~curve 2! is the strongest, while dissipation~curve 3! looks
relatively shallow. Similar trends are observed for stro
vortices in all hypofriction experiments.

Since hypofriction is negligibly small on the vortex scal
the dissipation comes entirely from the hyperviscosity@com-
paring dissipation tendencies of Figs. 6~b! and 6~a! one
should keep in mind longer time interval and higher intens

FIG. 6. The tendencies for strong vortices seen in experimen
~a! and 2h~b!. ~1!, vortex intensity;~2!, forcing tendency;~3!, dis-
sipation tendency;~4!, residual tendency.
8-9
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in 6~b!. Mergers show up in theD trend as sharp steps
Indeed, a merger would produce significant straining n
vortex core and hence a burst of filamentation and rapid
sipation.

The residual term gives mostly negative contribution
the vortex growth between mergers contrary to the line
drag trend.

Comparing two cases of Fig. 6 we could draw the follo
ing conclusions

~1! Forcing tendencyF(t) gives a consistent positiv
trend in all cases. Indeed, in the linear-drag case as well a
the early stage of hypofriction and no-friction regimes,F(t)
is the principal source of the vortex growth, while merge
play secondary role.

~2! The exact mechanism of the ‘‘vortex pump’’ nee
further study. It should involve the rapid adjustment of vo
tex shape~2-rms contour! to the source tendency, as w
found the core motion to remain relatively slow for stro
vortices.

~3! DissipationD(t) gives consistent negative input b
its relative value varies from case to case and depends o
vortex state.

~4! Residual~transfer! termT(t) gives indeterminate inpu
to a single realization and behaves differently in differe
regimes. In the hypofriction case its overall input is negati
except for large but rare merger events.

~5! In most cases the vortex fate would ultimately depe
on the balance betweenF and D. Linear drag dampens
equally all scales and could arrest vortex growth at a m
erate level. Hypofriction does not affect small~horizontal!
size and tips the balance over to theF term, hence allowing
strong vortices.

~6! Vortex growth would be arrested at some level b
cause as vortices grow in size, the forcing tendency~per unit
area! goes down. We observed this tendency for differe
vortex sizes and regimes but our data is insufficient to qu
tify it.

To understand the vortex growth mechanism D. Gura
has developed a simple model of randomly forced radial v
tex profiles~Gaussian, Rankine, etc.!. They exhibit the basic
phenomena of source accumulation, but more work is nee
to verify the premises and conclusions of such model
compare it to numeric simulations.

3. Statistical growth dynamics

Finally we turn to statistical trends of vortex arrays, ma
of a few strongest vortices, or larger vortex populations.
based this study on experiments 15 and 2h with forcing w
number kf580, and exploited several regimes of vort
tracking and census.

In experiment 15 we took a stationary~developed! vortic-
ity field and integrated it forward in time. A typical realiza
tion contains more than 500 vortices of mean level ab
2.4uz rmsu. We took the first 200 of them, and followed the
evolution over the friction timet51/l. Most vortices died
out during that period and Fig. 7~a! shows their life span
against their initial intensity.

The survival rate depends statistically on the vor
strength and the highest bin exhibits the highest rate. B
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fair number of moderately strong or weak vortices surviv
too as they gained strength in the process. Figure 7~b! plots
the vortex terminal intensity against the initial one for th
same group. We see a systematic transition pattern for
vortex population above 500-level: the strongest ones wo
go down to lower bins, while lower bins have tendency
move up or die out.

Thus, strong vortices are long-lived and persist on ti
scales comparable to 1/l. Their maximal intensity, howeve
remains limited during the observation period. Overall t
life span of even the strongest vortices is finite, so a typi
evolution could take a vortex up to the high bin and th
gradually bring it down. The offshoot of such stochas
growth-decay process is the stationary vortex distribution
intensity.

The detailed analysis of such stochastic~transition! pro-
cess, its stationary ensemble, and its relation to the b
forcing-dissipation parameters poses a challenging probl

Next we continued experiment 15 by tracking 10 stro
gest positive vortices. We used the vorticity field of 15
initialize two other experiments: hypofriction~2h! and no
friction ~not listed in the table! to determine the effect o
dissipation on the statistical growth process. Figure 8 sho
long time series of 10 strongest vortices in experiment 15~a!,
compared to the frictionless case~b!. While the linear-drag
case gives zero mean trend, the ‘‘no-friction’’ trajectori
grow almost linearly in time.

FIG. 7. Lifetimes of 200 vortices~a! and dependence of thei
final intensity~in t51/l) on the initial intensity~b! in experiment
15.

FIG. 8. Intensities of 10 strongest vortices vs time in experim
15 ~a! and in a similar experiment withl50 ~b!. Initial vorticity
field is the same in both cases.
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A comparison of the two demonstrates the role of
linear drag in stabilizing the mean vortex intensity. Inde
we estimate the growth tendency in Fig. 8~b! as 500 units per
time 1/(2l)516.7. Taking a simple growth model of th
‘‘mean-field’’ intensity,

d

dt
I 5a2lI , ~10!

with the growth tendencya of Fig. 8~b!, we find its station-
ary solutionI 5a/l'1000, which comes close to the ‘‘mea
level’’ of Fig. 8~a!.

The ~scale-dependent! hypofriction would still set a bal-
ance for the vortex growth~at a higher level!, but we can’t
write a simple ‘‘mean-field’’ model like Eq.~10! now. One
would rather need a full ‘‘vortex spectrum’’ model with th
stochastic ‘‘growth term’’ and scale-dependent dissipation
understand the hypofrictional turbulence in the energy ran

V. DISCUSSION AND CONCLUSIONS

~1! Nonuniversal features of the forced 2D turbulence
clude departure from thek25/3 spectra ~at low k), non-
Gaussianity, and nonlocal irregular transfers. Those were
ditionally viewed as artifacts of imperfect resolution or sca
limitations imposed by finite size/geometry. We consid
them more fundamental as any attempt to reproduce one
ture ~e.g., constant flux via smalll or hypofriction @8,12#!
distorts the other~large deviations fromk25/3).

~2! Universal spectra seem to be exceptional and unst
to the formation of secondary structures, like strong vorti
@10,8#.

~3! The physical space reveals different levels of vortic
organization:~i! microscale~background!, made of small
patches and filaments sustained by forcing dissipation,
unstable to secondary structures;~ii ! large-scale transien
clusters, circulation zones, and jets;~iii ! localized vortices
~above 2j rms).

~4! The background evolves rapidly from the rest state
the process of enstrophy saturation, while secondary st
tures grow through a slow process of energy saturation.

~5! Vortices appear in all regimes but local dynamics co
fines their size:~2–3)L f in our experiments and up to 5L f in
@8#. Under favorable conditions~no friction or hypofriction
with sufficient enstrophy resolution! vortices could grow
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strong~10–15 rms vorticity! and dominate the energy spe
trum. They contribute to spectral bulge and steep spec
slope up to23.

~6! The primary vortex growth mechanism is their abili
to integrate source balanced in the long run by dissipa
and to a lesser degree by nonlinear processes.

~7! Vortex mergers, typical of the decaying turbulenc
seem to play little role in the forced case. They become m
frequent, as vortices grow in size~and intensity!, e.g., during
slow hypofriction equilibration. But even then the forcin
tendency dominates.

~8! The forcing trendF ~per unit area! decreases with the
growth of vortex size. So eventually, nonlinear proces
~like mergers! could take over, but we have not reached th
stage. Besides,F seems to be the only way to inject vorticit
in the core, as other processes~mergers, etc.! could not raise
its level.

~9! Dissipation term includes~hyper! viscosity and linear
drag or hypofriction. The linear drag limits the vortex siz
and intensity, but hypofriction has little effect at the forcin
scale and leads to slow growth of strong but slender vorti
observed by Borue@8#.

~10! One could view the physical space turbulence a
multiscale ~in space time! stochastic process of the vorte
growth decay on the background of ‘‘near Gaussian25/3
vorticity field,’’ whose transition probabilities could b
linked to the basic parameters of forcing dissipation. W
examined a few statistical features and trends, but furt
work is needed to develop this approach.

~11! The physical space view leaves many open proble
like ~i! ‘‘vortex-pump’’ mechanism: the ability to accumu
late vorticity directly from stochastic source;~ii ! the role of
small ~enstrophy! scales in vortex generation and growt
~iii ! mechanism of frictional equilibration of the inverse ca
cade, given the absence of any structures, or processes o
energy-peak scale; and~iv! stochastic model of vortex
growth dynamics in physical space, as counterpart to
standard ‘‘cascade phenomenology.’’
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